

Module spec template 2023-24

Module specification

When printed this becomes an uncontrolled document. Please access the Module

Directory for the most up to date version by clicking on the following link: Module

directory

Module Code COM662

Module Title Software Development and Optimisation

Level 6

Credit value 20

Faculty FACE

HECoS Code 100956

Cost Code GACP

Programmes in which module to be offered

Programme title Is the module core or option for this
programme

BSc (Hons) Software Engineering Core

BSc (Hons) Software Engineering with
Industrial Placement

Core

Pre-requisites
N/A

Breakdown of module hours

Learning and teaching hours 12 hrs

Placement tutor support 0 hrs

Supervised learning e.g. practical classes, workshops 12 hrs

Project supervision (level 6 projects and dissertation

modules only)
0 hrs

Total active learning and teaching hours 24 hrs

Placement / work based learning 0 hrs

Guided independent study 176 hrs

Module duration (total hours) 200 hrs

For office use only
Initial approval date 08/11/2023

With effect from date Sept 2026

Date and details of
revision

Version number 1

https://www.glyndwr.ac.uk/modules/
https://www.glyndwr.ac.uk/modules/

Module spec template 2023-24

Module aims

This module provides students programming skills in one or more languages commonly
used in software development, enabling the creation of efficient, maintainable, and scalable
code. Provide a comprehensive understanding of the software development lifecycle, from
requirements analysis and design to implementation, testing, deployment, and maintenance.
Various software optimization techniques, algorithms, and data structures, enabling them to
improve the performance and efficiency of software applications. Develop students' abilities
to identify, diagnose, and fix software defects and performance issues, using appropriate
debugging and troubleshooting techniques and tools.

Module Learning Outcomes - at the end of this module, students will be able to:

1 Analyse a range of problems and produce designs and models for algorithmic solutions,
with the focus on optimisation.

2 Conduct a critical evaluation of problems and solutions by analysing computational
complexity.

3 Develop and implement computational solutions that showcase mastery in diverse data
structures, algorithms, and programming techniques.

Assessment

Indicative Assessment Tasks:

This section outlines the type of assessment task the student will be expected to complete

as part of the module. More details will be made available in the relevant academic year

module handbook.

Another example of the coursework could also be optimizing a given algorithm or developing

an optimized version of an existing algorithm. They should provide a detailed analysis of the

original algorithm's complexity, identify areas for improvement, implement the optimizations,

and compare the performance of the optimized algorithm with the original version. The

coursework piece should include code implementation, documentation, and a report outlining

the optimization process.

Assessment

number

Learning

Outcomes to

be met

Type of assessment Weighting (%)

1 1,2,3 Coursework 100%

Derogations
None

Learning and Teaching Strategies
In line with the Active Learning Framework, this module will be blended digitally with both a
VLE and online community. Content will be available for students to access synchronously

Module spec template 2023-24

and asynchronously and may indicatively include first and third-party tutorials and videos,
supporting files, online activities any additional content that supports their learning.  

As this module progresses, the strategies will change to best support a diverse learning
environment. Initially, the module will start with a heavier reliance on engaging tutor-led
lectures, demonstrations, and workshops to ensure that the students get the relevant threshold
concepts. As the module continues experiential and peer learning strategies will be
encouraged as the students’ progress with their portfolio work.  

Assessment will occur throughout the module to build student confidence and self-efficacy in
relation to complex software development problems. 

Indicative Syllabus Outline
Yearly content will be updated to represent the most appropriate content for current industry
technologies, but a list of indicative topics could include:

• Software optimization concepts and importance
• Performance metrics and benchmarks
• Profiling and Analysis

o Profiling tools and techniques
o Performance analysis and bottleneck identification
o Resource usage analysis (CPU, memory, I/O)

• Analysing algorithm complexity and efficiency
• Data Structures Optimization

o Choosing efficient data structures for different scenarios
o Optimizing data access and manipulation operations

• Code Optimization Techniques
o Optimizing loops and control flow structures
o Compiler optimizations and code transformation techniques
o Eliminating unnecessary computations and redundancy

• Optimizing for Specific Platforms or Environments
o Mobile application optimization
o Web application optimization
o Cloud computing and scalability considerations

Indicative Bibliography:
Please note the essential reads and other indicative reading are subject to annual review
and update.

Essential Reads

N/A

Other indicative reading

K. Kalpeth, A. Johri, Combining DataOps, MLOps and DevOps: Outperform Analytics and
Software Development with Expert Practices on Process Optimization and Automation, BPB
Publications, 2022.
M. Fischetti, Introduction to Mathematical Optimization, Independently published, 2019.
A. Dymo, Ruby Performance Optimization: Why Ruby Is Slow, and How to Fix It, O'Reilly,
2015.
J. M. White, Bandit Algorithms for Website Optimization: Developing, Deploying, and
Debugging, O’Reilly, 2012.
R. Gerber, The Software Optimization Cookbook, Intel Press, 2005.

